ANNA UNIVERSITY, CHENNAI

AFFILIATED INSTITUTIONS

R - 2009

CURRICULUM I SEMESTER (FULL TIME)

M.E. POWER SYSTEMS ENGINEERING

SEMESTER I

SL. NO	COURSE CODE	COURSE TITLE	L	Т	Ρ	С	
THEORY							
1	MA9216	Applied Mathematics for Electrical Engineers	3	1	0	4	
2	PS9211	Power System Analysis	3	1	0	4	
3	PS9212	Power System Operation and Control	3	0	0	3	
4	PS9213	Electrical Transients in Power Systems	3	0	0	3	
5	PS9214	System Theory	3	0	0	3	
6		Elective I	3	0	0	3	
PRACTICAL							
7	PS9215	Power System Simulation Laboratory	0	0	3	2	
		TOTAL	18	2	3	22	

ELECTIVES FOR POWER SYSTEM ENGINEERING

SEMESTER I

SL. No	COURSE CODE	COURSE TITLE	L	Т	Ρ	С
1	PE9214	Electro Magnetic Field Computation and Modelling	3	1	0	4
2	PE9211	Analysis of Electrical Machines	3	0	0	3
3	PE9213	Analysis of Inverters	3	0	0	3

MA 9216 APPLIED MATHEMATICS FOR ELECTRICAL ENGINEERS L T P C 3 1 0 4

UNIT I ADVANCED MATRIX THEORY

Eigen-values using QR transformations – Generalized eigen vectors – Canonical forms – Singular value decomposition and applications – Pseudo inverse – Least square approximations.

UNIT II LINEAR PROGRAMMING

Formulation – Graphical Solution – Simplex Method – Two Phase Method – Transportation and Assignment Problems.

UNIT III ONE DIMENSIONAL RANDOM VARIABLES

Random variables - Probability function – moments – moment generating functions and their properties – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions – Function of a Random Variable.

UNIT IV QUEUEING MODELS

Poisson Process – Markovian queues – Single and Multi Serve r Models – Little's formula – Machine Interference Model – Steady State analysis – Self Service queue.

UNIT V COMPUTATIONAL METHODS IN ENGINEERING

Boundary value problems for ODE – Finite difference methods – Numerical solution of PDE – Solution of Laplace and Poisson equations – Liebmann's iteration process – Solution of heat conduction equation by Schmidt explicit formula and Crank-Nicolson implicit scheme – Solution of wave equation.

L= 45 T=15 TOTAL: 60 PERIODS

REFERENCES

- 1. Bronson, R., Matrix Operation, Schaum's outline series, McGraw Hill, New York, (1989).
- 2. Taha, H. A., Operations Research: An Introduction, Seventh Edition, Pearson Education Edition, Asia, New Delhi (2002).
- 3. R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability and Statistics for Engineers & Scientists, Asia, 8th Edition, (2007).
- 4. Donald Gross and Carl M. Harris, Fundamentals of Queueing theory, 2nd edition, John Wiley and Sons, New York (1985).
- 5. Grewal, B.S., Numerical methods in Engineering and Science, 7th edition, Khanna Publishers, 200

PS 9211

UNIT I SOLUTION TECHNIQUE

Sparse Matrix techniques for large scale power systems: Optimal ordering schemes for preserving sparsity. Flexible packed storage scheme for storing matrix as compact arrays – Factorization by Bifactorization and Gauss elimination methods; Repeat solution using Left and Right factors and L and U matrices.

POWER SYSTEM ANALYSIS

UNIT II POWER FLOW ANALYSIS

Power flow equation in real and polar forms; Review of Newton's method for solution; Adjustment of P-V buses; Review of Fast Decoupled Power Flow method; Sensitivity factors for P-V bus adjustment; Net Interchange power control in Multi-area power flow analysis: ATC, Assessment of Available Transfer Capability (ATC) using Repeated Power Flow method; Continuation Power Flow method.

9

9

9

9

9

L T P C 3 1 0 4

9

UNIT III OPTIMAL POWER FLOW

Problem statement; Solution of Optimal Power Flow (OPF) – The gradient method, Newton's method, Linear Sensitivity Analysis; LP methods – With real power variables only – LP method with AC power flow variables and detailed cost functions; Security constrained Optimal Power Flow; Interior point algorithm; Bus Incremental costs.

UNIT IV SHORT CIRCUIT ANALYSIS

Fault calculations using sequence networks for different types of faults. Bus impedance matrix (Z_{BUS}) construction using Building Algorithm for lines with mutual coupling; Simple numerical problems. Computer method for fault analysis using Z_{BUS} and sequence components. Derivation of equations for bus voltages, fault current and line currents, both in sequence and phase domain using Thevenin's equivalent and Z_{BUS} matrix for different faults.

UNIT V TRANSIENT STABILITY ANALYSIS

Introduction, Numerical Integration Methods: Euler and Fourth Order Runge-Kutta methods, Algorithm for simulation of SMIB and multi-machine system with classical synchronous machine model; Factors influencing transient stability, Numerical stability and implicit Integration methods.

L= 45 T=15, TOTAL:60 PERIODS

REFERENCES

- 1. G W Stagg , A.H El. Abiad "Computer Methods in Power System Analysis", McGraw Hill, 1968.
- 2. P.Kundur, "Power System Stability and Control", McGraw Hill, 1994.
- 3. A.J.Wood and B.F.Wollenberg, "Power Generation Operation and Control", John Wiley and sons, New York, 1996.
- 4. W.F.Tinney and W.S.Meyer, "Solution of Large Sparse System by Ordered Triangular Factorization" IEEE Trans. on Automatic Control, Vol : AC-18, pp:333-346, Aug 1973.
- K.Zollenkopf, "Bi-Factorization : Basic Computational Algorithm and Programming Techniques ; pp:75-96 ; Book on "Large Sparse Set of Linear Systems" Editor: J.K.Rerd,Academic Press, 1971.

PS 9212 POWER SYSTEM OPERATION AND CONTROL LTPC

3 0 0 3

UNIT I LOAD FORECASTING

Introduction – Estimation of Average and trend terms – Estimation of periodic components – Estimation of Stochastic components : Time series approach – Auto- Regressive Model, Auto-Regressive Moving – Average Models – Kalman Filtering Approach – On-line techniques for non stationary load prediction.

UNIT II UNIT COMMITMENT

Constraints in unit commitment – Spinning reserve – Thermal unit constraints – Other constraints – Solution using Priority List method, Dynamic programming method - Forward DP approach Lagrangian relaxation method – adjusting λ .

9

9

9 1ic

UNIT III GENERATION SCHEDULING

The Economic dispatch problem – Thermal system dispatching with network losses considered – The Lambda – iteration method – Gradient method of economic dispatch – Economic dispatch with Piecewise Linear cost functions – Transmission system effects – A two generator system – coordination equations – Incremental losses and penalty factors-Hydro Thermal Scheduling using DP.

UNIT IV CONTROL OF POWER SYSTEMS

Review of AGC and reactive power control -System operating states by security control functions – Monitoring, evaluation of system state by contingency analysis – Corrective controls (Preventive, emergency and restorative) - Energy control center – SCADA system – Functions – monitoring, Data acquisition and controls – EMS system.

UNIT V STATE ESTIMATION

Maximum likelihood Weighted Least Squares Estimation: - Concepts - Matrix formulation - Example for Weighted Least Squares state estimation ; State estimation of an AC network: development of method – Typical results of state estimation on an AC network – State Estimation by Orthogonal Decomposition algorithm – Introduction to Advanced topics : Detection and Identification of Bad Measurements , Estimation of Quantities Not Being Measured , Network Observability and Pseudo – measurements – Application of Power Systems State Estimation .

TOTAL: 45 PERIODS

REFERENCES

- 1. O.I.Elgerd, "Electric Energy System Theory an Introduction", Tata McGraw Hill, New Delhi 2002.
- 2. P.Kundur ; "Power System Stability and Control", EPRI Publications, California , 1994.
- 3. Allen J.Wood and Bruce.F.Wollenberg, "Power Generation Operation and Control', John Wiley & Sons , New York, 1996.
- 4. A.K.Mahalanabis, D.P.Kothari. and S.I.Ahson., "Computer Aided Power System Analysis and Control", Tata McGraw Hill publishing Ltd , 1984.

PS 9213	ELECTRICAL TRANSIENTS IN POWER SYSTEMS	LTPC
		3003
UNIT I	TRAVELLING WAVES ON TRANSMISSION LINE	9

Lumped and Distributed Parameters – Wave Equation – Reflection, Refraction, Behaviour of Travelling waves at the line terminations – Lattice Diagrams – Attenuation and Distortion – Multi-conductor system and Velocity wave.

UNIT II COMPUTATION OF POWER SYSTEM TRANSIENTS

Principle of digital computation – Matrix method of solution, Modal analysis,Z transforms, Computation using EMTP – Simulation of switches and non-linear elements.

UNIT III LIGHTNING, SWITCHING AND TEMPORARY OVERVOLTAGES 9 Lightning: Physical phenomena of lightning – Interaction between lightning and power system – Factors contributing to line design – Switching: Short line or kilometric fault – Energizing transients - closing and re-closing of lines - line dropping, load rejection -Voltage induced by fault – Very Fast Transient Overvoltage (VFTO)

9

9

UNITIV BEHAVIOUR OF WINDING UNDER TRANSIENT CONDITION

Initial and Final voltage distribution - Winding oscillation - traveling wave solution - Behaviour of the transformer core under surge condition – Rotating machine – Surge in generator and motor

UNIT V INSULATION CO-ORDINATION

Principle of insulation co-ordination in Air Insulated substation (AIS) and Gas Insulated Substation (GIS), insulation level, statistical approach, co-ordination between insulation and protection level –overvoltage protective devices – lightning arresters, substation earthing.

TOTAL: 45 PERIODS

9

9

REFERENCES

- 1. Pritindra Chowdhari, "Electromagnetic transients in Power System", John Wiley and Sons Inc., 1996.
- 2. Allan Greenwood, "Electrical Transients in Power System", Wiley & Sons Inc. New York, 1991.
- 3. Klaus Ragaller, "Surges in High Voltage Networks", Plenum Press, New York, 1980.
- 4. Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering", (Second edition) Newage International (P) Ltd., New Delhi, 1990.
- 5. Naidu M S and Kamaraju V, "High Voltage Engineering", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2004.
- 6. IEEE Guide for safety in AC substation grounding IEEE Standard 80-2000.
- 7. Working Group 33/13-09 (1988), 'Very fast transient phenomena associated with Gas Insulated System', CIGRE, 33-13, pp. 1-2

PS 9214

UNIT I STATE VARIABLE REPRESENTATION

Introduction-Concept of State-State equation for Dynamic Systems-Time invariance and linearity-Nonuniqueness of state model-State Diagrams-Physical System and State Assignment.

SYSTEM THEORY

UNIT II SOLUTION OF STATE EQUATION

Existence and uniqueness of solutions to Continuous-time state equations-Solution of Nonlinear and Linear Time Varying State equations-Evaluation of matrix exponential-System modes-Role of Eigenvalues and Eigenvectors.

UNIT III CONTROLLABILITY AND OBSERVABILITY

Controllability and Observability-Stabilizability and Detectability-Test for Continuous time Systems- Time varying and Time invariant case-Output Controllability-Reducibility-System Realizations.

UNIT IV STABILITY

Introduction-Equilibrium Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI Systems-Equilibrium Stability of Nonlinear Continuous Time Autonomous Systems-The Direct Method of Lyapunov and the Linear Continuous-Time Autonomous Systems-Finding Lyapunov Functions for Nonlinear Continuous Time Autonomous Systems-Krasovskii and Variable-Gradiant Method.

L T P C 3 0 0 3

9

9

9 e

UNIT V MODAL CONTROL

Introduction-Controllable and Observable Companion Forms-SISO and MIMO Systems-The Effect of State Feedback on Controllability and Observability-Pole Placement by State Feedback for both SISO and MIMO Systems-Full Order and Reduced Order Observers.

TOTAL: 45 PERIODS

9

REFERENCES

- 1. M. Gopal, "Modern Control System Theory", New Age International, 2005.
- 2. K. Ogatta, "Modern Control Engineering", PHI, 2002.
- 3. John S. Bay, "Fundamentals of Linear State Space Systems", McGraw-Hill, 1999.
- 4. D. Roy Choudhury, "Modern Control Systems", New Age International, 2005.
- 5. John J. D'Azzo, C. H. Houpis and S. N. Sheldon, "Linear Control System Analysis and Design with MATLAB", Taylor Francis, 2003.
- 6. Z. Bubnicki, "Modern Control Theory", Springer, 2005.

PS 9215 POWER SYSTEM SIMULATION LABORATORY-I L T P C

0 0 3 2

LIST OF EXPERIMENTS

- 1. Power flow analysis by Newton-Raphson method
- 2. Power flow analysis by Fast decoupled method
- 3. Transient stability analysis of single machine-infinite bus system using classical machine model
- 4. Contingency analysis: Generator shift factors and line outage distribution factors
- 5. Economic dispatch using lambda-iteration method
- 6. Unit commitment: Priority-list schemes and dynamic programming
- Analysis of switching surge using EMTP : Energisation of a long distributed-parameter line
- 8. Analysis of switching surge using EMTP : Computation of transient recovery voltage

P = 45 TOTAL: 45 PERIODS

7

PE 9214 ELECTROMAGNETIC FIELD COMPUTATION L T P C AND MODELLING 3104

UNIT I INTRODUCTION

Review of basic field theory – electric and magnetic fields – Maxwell's equations – Laplace, Poisson and Helmoltz equations – principle of energy conversion – force/torque calculation – Electro thermal formulation.

UNIT II SOLUTION OF FIELD EQUATIONS I

Limitations of the conventional design procedure, need for the field analysis based design, problem definition, solution by analytical methods-direct integration method – variable separable method – method of images, solution by numerical methods- Finite Difference Method.

UNIT III SOLUTION OF FIELD EQUATIONS II

Finite element method (FEM) – Differential/ integral functions – Variational method – Energy minimization – Discretisation – Shape functions –Stiffness matrix –1D and 2D planar and axial symmetry problem.

UNIT IV FIELD COMPUTATION FOR BASIC CONFIGURATIONS

Computation of electric and magnetic field intensities – Capacitance and Inductance – Force, Torque, Energy for basic configurations.

UNIT V DESIGN APPLICATIONS

Insulators- Bushings – Cylindrical magnetic actuators – Transformers – Rotating machines.

L=45: T=15, TOTAL : 60 PERIODS

REFERENCES

- 1. K.J.Binns, P.J.Lawrenson, C.W Trowbridge, "The analytical and numerical solution of Electric and magnetic fields", John Wiley & Sons, 1993.
- 2. Nathan Ida, Joao P.A.Bastos, "Electromagnetics and calculation of fields", Springer-Verlage, 1992.
- 3. Nicola Biyanchi, "Electrical Machine analysis using Finite Elements", Taylor and Francis Group, CRC Publishers, 2005.
- S.J Salon, "Finite Element Analysis of Electrical Machines." Kluwer Academic Publishers, London, 1995, distributed by TBH Publishers & Distributors, Chennai, India
- 5. User manuals of MAGNET, MAXWELL & ANSYS software.
- 6. Silvester and Ferrari, "Finite Elements for Electrical Engineers" Cambridge University press, 1983.

PE 9211 ANALYSIS OF ELECTRICAL MACHINES L T

L T P C 3 0 0 3

UNIT I PRINCIPLES OF ELECTROMAGNETIC ENERGY CONVERSION 9

General expression of stored magnetic energy, co-energy and force/ torque – example using single and doubly excited system –Calculation of air gap mmf and per phase machine inductance using physical machine data.

12

12

12

12

UNIT II REFERENCE FRAME THEORY

Static and rotating reference frames – transformation of variables – reference frames – transformation between reference frames – transformation of a balanced set –balanced steady state phasor and voltage equations – variables observed from several frames of reference.

UNIT III DC MACHINES

Voltage and toque equations – dynamic characteristics of permanent magnet and shunt DC motors – state equations - solution of dynamic characteristic by Laplace transformation.

UNIT IV INDUCTION MACHINES

Voltage and toque equations – transformation for rotor circuits – voltage and toque equations in reference frame variables – analysis of steady state operation – free acceleration characteristics – dynamic performance for load and torque variations – dynamic performance for three phase fault – computer simulation in arbitrary reference frame.

UNIT V SYNCHRONOUS MACHINES

Voltage and Torque Equation – voltage Equation in arbitrary reference frame and rotor reference frame – Park equations - **rotor angle and angle between rotor** – steady state analysis – dynamic performances for torque variations- dynamic performance for three phase fault – transient stability limit – critical clearing time – computer simulation.

- 1. Paul C.Krause, OlegWasyzczuk, Scott S, Sudhoff, "Analysis of Electric Machinery and Drive Systems", IEEE Press, Second Edition.
- 2. R.Krishnan, "Electric Motor Drives, Modeling, Analysis and Control", Prentice Hall of India, 2002

REFERENCES

TEXT BOOKS

- 1. Samuel Seely, "Eletomechanical Energy Conversion", Tata McGraw Hill Publishing Company,
- 2. A.E, Fitzgerald, Charles Kingsley, Jr, and Stephan D, Umanx, "Electric Machinery", Tata McGraw Hill, 5th Edition, 1992

PE 9213	ANALYSIS OF INVERTERS	LTPC
		3003

UNIT I SINGLE PHASE INVERTERS

Introduction to self commutated switches : MOSFET and IGBT - Principle of operation of half and full bridge inverters – Performance parameters – Voltage control of single phase inverters using various PWM techniques – various harmonic elimination techniques – forced commutated Thyristor inverters.

UNIT II THREE PHASE VOLTAGE SOURCE INVERTERS

180 degree and 120 degree conduction mode inverters with star and delta connected loads – voltage control of three phase inverters: single, multi pulse, sinusoidal, space vector modulation techniques.

TOTAL : 45 PERIODS

12

9

9

9

9

UNIT III CURRENT SOURCE INVERTERS

Operation of six-step thyristor inverter – inverter operation modes – load – commutated inverters – Auto sequential current source inverter (ASCI) – current pulsations – comparison of current source inverter and voltage source inverters

UNIT IV MULTILEVEL INVERTERS

Multilevel concept – diode clamped – flying capacitor – cascade type multilevel inverters - Comparison of multilevel inverters - application of multilevel inverters

UNIT V RESONANT INVERTERS

Series and parallel resonant inverters - voltage control of resonant inverters – Class E resonant inverter – resonant DC – link inverters.

TOTAL : 45 PERIODS

TEXT BOOKS

- 1. Rashid M.H., "Power Electronics Circuits, Devices and Applications ", Prentice Hall India, Third Edition, New Delhi, 2004.
- 2. Jai P.Agrawal, "Power Electronics Systems", Pearson Education, Second Edition, 2002.
- 3. Bimal K.Bose "Modern Power Electronics and AC Drives", Pearson Education, Second Edition, 2003.
- 4. Ned Mohan, Undeland and Robbin, "Power Electronics: converters, Application and design" John Wiley and sons. Inc, Newyork, 1995.
- 5. Philip T. krein, "Elements of Power Electronics" Oxford University Press -1998.

REFERENCES

- 1. P.C. Sen, "Modern Power Electronics", Wheeler Publishing Co, First Edition, New Delhi, 1998.
- 2. P.S.Bimbra, "Power Electronics", Khanna Publishers, Eleventh Edition, 2003.

9

6

9